Aplica los principios y técnicas básicas del cálculo vectorial para resolver problemas de ingeniería del entorno.

La asignatura de Cálculo Vectorial se organiza en cinco temas.

En el primer tema de la asignatura se inicia con la comprensión, manejo algebraico y representación geométrica de los vectores, utilizando el producto escalar para la obtención del trabajo realizado por una fuerza y el producto vectorial para el cálculo del momento de la misma, entre otras aplicaciones. Se estudia el triple producto escalar como parte de las propiedades de los productos de vectores para calcular el volumen de un paralelepípedo rectangular y el momento de una fuerza con respecto a un eje, entre otras aplicaciones. Terminando el tema con la obtención de ecuaciones de rectas y planos en el espacio.

En el segundo tema se estudian diferentes tipos de curvas en el plano para su aplicación en el estudio y representación del movimiento de un cuerpo, su posición, velocidad y aceleración. Se trabaja en coordenadas rectangulares y coordenadas polares, de acuerdo a la geometría de las trayectorias propuestas y aprovechando en cada caso, la facilidad en el manejo algebraico de las ecuaciones utilizadas. Se obtiene las tangentes horizontal y vertical a una curva y la longitud de arco, así como el área de una superficie.

En el tercer tema se inicia con el estudio de diferentes tipos de curvas en el espacio en forma paramétrica. Analiza el límite de las funciones y su continuidad. Se obtiene la derivada de una función vectorial y sus propiedades, y las integrales correspondientes. Del mismo modo se analizan los vectores tangente, normal y binormal que caracterizan una curva en el espacio, así como la longitud de arco y su curvatura. Se estudian las aplicaciones de funciones vectoriales para representar modelos físicos como: escaleras de caracol, hélices cónicas, etc.

En el cuarto tema se grafican funciones de dos variables y se utilizan los mapas de contorno y las curvas de nivel para comprender la definición de función de dos variables.Analiza el límite de las funciones de varias variables y su continuidad. Se obtienen lasderivadas parciales de una función y se estudian sus propiedades. Se calculan las derivadas
parciales de las funciones de dos variables y se muestra la interpretación geométrica de las mismas. Se estudia el concepto de diferencial y la linealización de una función. Se complementa el tema de derivación con la regla de la cadena, la derivación implícita y derivadas parciales de orden superior. Se introduce la definición de gradiente para el
cálculo de derivadas direccionales. Se termina el tema calculando los valores extremos de funciones de varias variables.

En el último tema se estudian las integrales dobles y triples en diferentes sistemas de coordenadas como una herramienta para el cálculo de áreas y volúmenes principalmente, donde el uso de regiones tipo I y tipo II permite utilizar la integral múltiple para este fin. La integral múltiple se considera como tema fundamental. Se introducen la definición de campo vectorial, resaltando la importancia geométrica y física, tomando ejemplos prácticos como el flujo de calor, flujo de energía, el campo gravitatorio o el asociado a cargas eléctricas, entre otros; análisis que servirá para dar significado a la representación geométrica del gradiente, la divergencia y el rotacional de un campo vectorial. Se finaliza el tema con la integral de línea y los teoremas clásicos de integrales: de Green, de Stokes y de la divergencia de Gauss.